Isotopy groups

Author:
Lawrence L. Larmore

Journal:
Trans. Amer. Math. Soc. **239** (1978), 67-97

MSC:
Primary 57R40

DOI:
https://doi.org/10.1090/S0002-9947-1978-0487040-4

MathSciNet review:
487040

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For any mapping $f:V \to M$ (not necessarily an embedding), where *V* and *M* are differentiable manifolds without boundary of dimensions *k* and *n*, respectively, *V* compact, let ${[V \subset M]_f} = {\pi _1}({M^V},E,f)$, i.e., the set of isotopy classes of embeddings with a specific homotopy to *f* (*E* = space of embeddings). The purpose of this paper is to enumerate ${[V \subset M]_f}$. For example, if $k \geqslant 3,n = 2k$, and *M* is simply connected, ${[{S^k} \subset M]_f}$ corresponds to ${\pi _2}M$ or ${\pi _2}M \otimes {Z_2}$, depending on whether *k* is odd or even. In the metastable range, i.e., $3(k + 1) > 2n$, a natural Abelian affine structure on ${[V \subset M]_f}$ is defined: if, further, *f* is an embedding ${[V \subset M]_f}$ is then an Abelian group. The set of isotopy classes of embeddings homotopic to *f* is the set of orbits of the obvious left action of ${\pi _1}({M^V},f)$ on ${[V \subset M]_f}$. A spectral sequence is constructed converging to a theory ${H^\ast }(f)$. If $3(k + 1) < 2n, {H^0}(f) \cong {[V \subset M]_f}$ provided the latter is nonempty. A single obstruction $\Gamma (f) \in {H^1}(f)$ is also defined, which must be zero if *f* is homotopic to an embedding; this condition is also sufficient if $3(k + 1) \leqslant 2n$. The ${E_2}$ terms are cohomology groups of the reduced deleted product of *V* with coefficients in sheaves which are not even locally trivial. ${[{S^k} \subset M]_f}$ is specifically computed in terms of generators and relations if $n = 2k, k \geqslant 3$ (Theorem 6.0.2).

- James C. Becker,
*Cohomology and the classification of liftings*, Trans. Amer. Math. Soc.**133**(1968), 447–475. MR**236924**, DOI https://doi.org/10.1090/S0002-9947-1968-0236924-4 - Jean-Pierre Dax,
*Étude homotopique des espaces de plongements*, Ann. Sci. École Norm. Sup. (4)**5**(1972), 303–377 (French). MR**321110** - André Haefliger,
*Plongements différentiables dans le domaine stable*, Comment. Math. Helv.**37**(1962/63), 155–176 (French). MR**157391**, DOI https://doi.org/10.1007/BF02566970 - André Haefliger,
*Points multiples d’une application et produit cyclique réduit*, Amer. J. Math.**83**(1961), 57–70 (French). MR**120655**, DOI https://doi.org/10.2307/2372720 - I. M. Hall,
*The generalized Whitney sum*, Quart. J. Math. Oxford Ser. (2)**16**(1965), 360–384. MR**187245**, DOI https://doi.org/10.1093/qmath/16.4.360 - Sze-tsen Hu,
*Homotopy theory*, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR**0106454** - Lawrence L. Larmore,
*Obstructions to embedding and isotopy in the metastable range*, Rocky Mountain J. Math.**3**(1973), 355–375. MR**356088**, DOI https://doi.org/10.1216/RMJ-1973-3-3-355 - Lawrence L. Larmore,
*Twisted cohomology theories and the single obstruction to lifting*, Pacific J. Math.**41**(1972), 755–769. MR**353315** - L. L. Larmore and E. Thomas,
*Group extensions and principal fibrations*, Math. Scand.**30**(1972), 227–248. MR**328935**, DOI https://doi.org/10.7146/math.scand.a-11078 - L. L. Larmore and E. Thomas,
*Group extensions and twisted cohomology theories*, Illinois J. Math.**17**(1973), 397–410. MR**336744** - Mark Mahowald and Robert Rigdon,
*Obstruction theory with coefficients in a spectrum*, Trans. Amer. Math. Soc.**204**(1975), 365–384. MR**488058**, DOI https://doi.org/10.1090/S0002-9947-1975-0488058-5
Hans A. Salomonsen,

*On the existence and classification of differentiable embeddings in the metastable range*(to appear).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57R40

Retrieve articles in all journals with MSC: 57R40

Additional Information

Keywords:
Isotopy,
obstructions to embedding,
twisted cohomology

Article copyright:
© Copyright 1978
American Mathematical Society